
Scaling Deep Learning
Mike Ringenburg (mikeri@cray.com)

Slides courtesy of Peter Mendygral (pjm@cray.com)

ALCF SDL Workshop 2018 Cray Inc. © 2018

Legal Disclaimer

2

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual
property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers
and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray
Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of
Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect
actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, and URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT,
CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM, REVEAL. The following system family marks, and associated
model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other
trademarks used in this document are the property of their respective owners.

ALCF SDL Workshop 2018 Cray Inc. © 2018

Motivation

●  A trained neural network can be a powerful tool for
●  Pattern recognition
●  Classification
●  Clustering
●  Others…

●  Scaling Deep Learning (DL) training is also a tool for
●  Models that take a very long time to train (and have a very large training

dataset)
●  Increasing the frequency at which models can be retrained with new or

improved data

●  This talk reviews scaling DL training and topics that can be
important to successfully applying it

3

ALCF SDL Workshop 2018 Cray Inc. © 2018

Agenda

● De-mystifying Deep Learning

●  TensorFlow on Theta (ß covered earlier today)

● Parallelization Methods for TensorFlow

● Convergence Considerations at Scale

● CPE ML Plugin Example

4

ALCF SDL Workshop 2018 Cray Inc. © 2018

De-mystifying Deep Learning

ALCF SDL Workshop 2018 Cray Inc. © 2018

What is Deep Learning: A Specific Example

●  An organic gardener is building a robot in his garage to recognize the
10 insects found in his garden, and decide which ones to kill with a
laser

●  The robot will have a camera, and will capture JPEG files of the
insects

●  The robot needs a ‘program’ to classify each JPEG according to which
of the 10 kinds of insect was photographed

JPEG ‘Program’
“That’s a
Japanese
beetle”!

6

ALCF SDL Workshop 2018 Cray Inc. © 2018

Inputs & Outputs

● Our input is a JPEG
●  224x224 pixels, 3 colors à a 224x224x3

element vector of the pixel values
● Our output is a classification

●  One of 10 categories à a 10 element
vector with a “1” in the position representing
the category to which the image belongs

How many “IF” statements will we
need to figure out that a bunch of
pixel values is a Japanese beetle?

Bruce Marlin
(CC BY 3.0: Attribution 3.0 Unported)

7

ALCF SDL Workshop 2018 Cray Inc. © 2018

This is an Artificial Intelligence Problem

●  If you can’t get the output from the input with a bunch
of loops and conditionals, it’s AI

● But, if that won’t work, how can we do it?

● Hint #1: Any mapping of inputs to outputs is a function
● Hint #2: A function can be approximated using a (good)

approximating function

8

ALCF SDL Workshop 2018 Cray Inc. © 2018

An Approximating Function

● How can we determine a good approximating

function?
●  Choose its form (linear, polynomial, …)
●  Minimize the overall error at a finite number of inputs with known

outputs - - fit the curve
●  We have to find the values of the free parameters of the function that

minimize the error – it doesn’t matter how we do it

Fitting the curve is a lot like training the function
to know the answer for arbitrary inputs

9

ALCF SDL Workshop 2018 Cray Inc. © 2018

Training via Gradient Descent
●  We want to approximate y=f(x)

●  Find a function that maps a set of
inputs to a set of outputs, to some
level of accuracy

●  We know yi=f(xi), for i=1,N
●  Iterate:

●  First iteration only: initialize the free
parameters of f

●  Calculate error (over N known points)
●  Calculate gradient of error, as a

function of the free parameters of f
●  Adjust the free parameters of f a

‘small’ distance in the direction of
negative of error gradient

●  Assess convergence & stop when
‘good enough’

Calculate
gradient, using

the entire
training set

Use gradient to
update the

model

Converged? Done Yes

No

10

ALCF SDL Workshop 2018 Cray Inc. © 2018

A Really Useful Kind of Function
●  This image shows a

deep neural network
●  An approximating

function, with free
parameters called
weights and biases

●  Deep networks have
been found to be
especially powerful

●  Neural networks can
approximate any
continuous function
arbitrarily well

X

f(X)

11

ALCF SDL Workshop 2018 Cray Inc. © 2018

HPC Attributes

● DL training is a classic high-performance computing
problem which demands:

●  Large compute capacity in terms of FLOPs, memory capacity and

bandwidth
●  A performant interconnect for fast communication of gradients and

model parameters
●  Parallel I/O and storage with sufficient bandwidth to keep the

compute fed at scale

12

ALCF SDL Workshop 2018 Cray Inc. © 2018

●  Data parallel training divides a global mini-batch of examples across
processes

●  Each process computes gradients from their local mini-batch
●  Average gradients across processes
●  All processes update their local model with averaged gradients (all processes

have the same model)

●  Not shown is the I/O activity of reading training samples (and possible
augmentation)

Data Parallelism - Collective-based Synchronous
SGD

Compute
intensive

Communication
intensive

Typically not
much compute

13

ALCF SDL Workshop 2018 Cray Inc. © 2018

Why do we want to scale?

●  Deep Network Training
●  We can strong scale training time-to-accuracy provided

●  Number of workers (e.g., # nodes) << number of training examples
●  Learning rate for particular batch size / scale is known

●  Hyper-Parameter Optimization
●  For problems and datasets where baseline accuracy is not known

●  learning rate schedule
●  momentum
●  batch size

●  Evolve topologies if good architecture is unknown (common with novel
datasets / mappings)
●  Layer types, width, number filters
●  Activation functions, drop-out rates

14

ALCF SDL Workshop 2018 Cray Inc. © 2018

Parallelization Methods for DL

ALCF SDL Workshop 2018 Cray Inc. © 2018

Parallelization Techniques

●  Data Parallelism
●  As described earlier, divides global mini-batch among processes
●  Two methods for this:

●  Synchronous: single model (possibly replicated across all processes) updated with
globally averaged gradients every iteration

●  Asynchronous: processes provide gradients every iteration but are allowed to fall out
of sync from one another. Processes each have their own model that may or may
not be the same as any other process

●  Model Parallelism
●  Single model with layers decomposed across processes
●  Activations communicated between processes

●  This talk will focus on synchronous data parallel approach

16

ALCF SDL Workshop 2018 Cray Inc. © 2018

Distributed TensorFlow

●  TensorFlow has a native method for parallelism across nodes
●  ClusterSpec API
●  Uses gRPC layer in TensorFlow based on sockets

●  Can be difficult to use and optimize

●  User must specify
●  hostnames and ports for all worker processes
●  hostnames and ports for all parameter server processes (see next slide)
●  # of workers
●  # of parameter server processes
●  Chief process of workers

17

ALCF SDL Workshop 2018 Cray Inc. © 2018

Distributed TensorFlow

●  Number of parameter
servers (PS) processes to
use is not clear
●  Too few results in many-to-

few comm pattern (very bad)
and stalls delivering updated
parameters

●  Too many results in many-to-
many comm patter (also bad)

●  Users typically have to pick
a scale and experiment for
best performance

18

ALCF SDL Workshop 2018 Cray Inc. © 2018

Distributed TensorFlow Scaling on Cray XC40 - KNL

19

0%

20%

40%

60%

80%

100%

120%

1 4 16 64

E
ffi

ci
en

cy

Workers

ResNet-50 with 1 PS

From Mathuriya et al. @ NIPS 2017

Mini-batch size
(MBS)=128

ALCF SDL Workshop 2018 Cray Inc. © 2018

MPI-based Data Parallel TensorFlow

●  The performance and usability issues with distributed TensorFlow
can be addressed by adopting an MPI communication model

●  TensorFlow does have an MPI option, but it only replaces point to
point operations in gRPC with MPI
●  Collective algorithm optimization in MPI not used

●  Other frameworks, such as Caffe and CNTK, include MPI
collectives

●  An MPI collective based approach would eliminate the need for PS
processes and likely be optimized without intervention from the
user

20

ALCF SDL Workshop 2018 Cray Inc. © 2018

Scalable Synchronous Data Parallelism

input

model

input

model

input

model

Update Update Update

add add add Scalable Global Add

.

.

Device 1 Device 2 Device n

P P P

ΔP
Client Client Client

● Note there are no PS processes in this model
● Resources dedicated to gradient calculation

21

ALCF SDL Workshop 2018 Cray Inc. © 2018

Uber Horovod

22

●  Uber open source addon for TensorFlow, PyTorch,
and Keras-on-TF that replaces native optimizer
class with a new class
●  Horovod adds an allreduce between gradient computation

and model update in this class

●  New Python class includes NCCL and MPI
collective reductions for gradient aggregation

●  https://github.com/uber/horovod

●  No modifications to TensorFlow source required
●  User modifies Python training script instead

ALCF SDL Workshop 2018 Cray Inc. © 2018

Cray Programming Environment Machine Learning
Plugin (CPE ML Plugin)

23

●  DL communication plugin with Python and C APIs

●  Originally developed for TensorFlow but also portable to other frameworks
(PyTorch and Keras tested)
●  Callable from C/C++ source
●  Called from Python if data stored in NumPy arrays or Tensors

●  Like Horovod does not require modification to TensorFlow source
●  User modifies training script

●  Uses custom allreduce specifically optimized for DL workloads
●  Optimized for Cray Aries interconnect and IB for Cray clusters

●  Tunable through API and environment variables

●  Supports multiple gradient aggregations at once with thread teams
●  Useful for Generative Adversarial Networks (GAN), for example

ALCF SDL Workshop 2018 Cray Inc. © 2018

Horovod / CPE ML Plugin – Throughput Scaling

24

32

128

512

2048

8192

32768

131072

1 4 16 64 256 1024

Sa
m

pl
es

/s
ec

 (a
gg

re
ga

te
)

Nodes (GPUs)

Inception v3 Performance on XC50 (Piz Daint at CSCS)
– CPE ML Plugin ONLY

MBS=4 MBS=16 MBS=32

MBS=64 MBS=64 (gRPC) 200 x N

32

128

512

2048

8192

32768

2 8 32 128 512

Sa
m

pl
es

/s
ec

 (a
gg

re
ga

te
)

Nodes

ResNet50 Performance on XC40 (Cori KNL at NERSC)
Horovod and CPE ML Plugin

CPE ML Plugin - MBS=128 CPE ML Plugin - MBS=32 Horovod - MBS=32

CPE ML Plugin
1.8X faster than
gRPC at 128 nodes

1.4X faster than
Horovod at 128
nodes, 3.2X at
1024 nodes

ALCF SDL Workshop 2018 Cray Inc. © 2018

Convergence Considerations at
Scale

ALCF SDL Workshop 2018 Cray Inc. © 2018

Problems in Scaling DL Training

●  Increasing workers increases the global batch size
●  This reduces the number of updates to the model (iterations) per

epoch (full pass through dataset)
●  Can require more iterations to converge to same validation accuracy

for models trained at smaller batch sizes

●  Large-batch (LB) training can have different convergence
properties than Small-batch (SB) training
●  LB training can lead to models which fail to generalize to validation

datasets
●  LB training error can look similar to SB training error, but validation

error fails to improve

26

ALCF SDL Workshop 2018 Cray Inc. © 2018

Problems in Scaling DL Training

● Possible reasons for the observed failure to generalize
using large batch methods [2]:
●  The model overfits
●  Optimization is attracted to saddle-points
●  Loss of the explorative properties gained with small batches

27

ALCF SDL Workshop 2018 Cray Inc. © 2018

Observations on Scaled Learning Rates
●  Step 1) Start with common initial learning rate for selected optimizer (from Keras documentation)

●  Adam -> 0.001
●  RMSProp -> 0.001
●  SGD -> 0.01
●  Adagrad -> 0.01
●  Adadelta -> 1.0

●  Step 2) Multiply learning rate by N or Sqrt(N)
●  N is the number of parallel processes
●  Discussed in further detail on next slide

●  Step 3) Decay learning rate during training (e.g., exponential decay)
●  Setup a learning rate schedule using your initial learning rate as the starting state
●  Learning rate typically lowered periodically or continuously
●  Helps improve final accuracy
●  Likely very important to reduce learning rate over time when initial learning rate scaled large

●  Step 4) Run it

●  Train and observe loss or training accuracy, check validation accuracy
●  Adjust initial learning rate up if learning too slowly or down if model is not learning
●  Repeat steps as needed to improve convergence and accuracy

28

ALCF SDL Workshop 2018 Cray Inc. © 2018

Learning Rate Scaling Rules
●  Sqrt Scaling Rule:

●  When the local minibatch size is multiplied by 𝑁↓𝑤𝑜𝑟𝑘𝑒𝑟𝑠 , multiply the learning rate by √𝑁↓𝑤𝑜𝑟𝑘𝑒𝑟𝑠  .

𝜂↓𝑖𝑛𝑖𝑡 =𝜂↓𝑖𝑛𝑖𝑡 ∗√𝑁↓𝑤𝑜𝑟𝑘𝑒𝑟𝑠  

●  Error on the mean only improves as sqrt(N_workers)

●  Linear Scaling Rule:
●  When the minibatch size is multiplied by N, multiply the learning rate by N.

𝜂↓𝑖𝑛𝑖𝑡 =𝜂↓𝑖𝑛𝑖𝑡 ∗𝑁↓𝑤𝑜𝑟𝑘𝑒𝑟𝑠 

●  Naïve rule for scaling learning rate in distributed training but it works for some problems
●  More attractive (when it works) because it shouldn’t require many additional iterations to reach same

accuracy

29

ALCF SDL Workshop 2018 Cray Inc. © 2018

Other Considerations

●  Linearly scaled learning rate causes most problems
early in training [3]
●  Design a warm-up set of iterations to reduce these errors
●  Once training settled on good path, transition to larger learning

rate
● SGD momentum can be useful at scale [1]
●  Layer-wise Adaptive Rate Scaling (LARS) allows

different learning rates at each layer [1]

30

ALCF SDL Workshop 2018 Cray Inc. © 2018

Useful References

[1] LARGE BATCH TRAINING OF CONVOLUTIONAL NETWORKS --
https://arxiv.org/pdf/1708.03888.pdf

[2] ON LARGE-BATCH TRAINING FOR DEEP LEARNING: GENERALIZATION GAP
AND SHARP MINIMA -- https://openreview.net/pdf?id=H1oyRlYgg

[3] Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour --
https://research.fb.com/wp-content/uploads/2017/06/imagenet1kin1h5.pdf

[4] Train longer, generalize better: closing the generalization gap in large batch
training of neural networks -- https://arxiv.org/pdf/1705.08741.pdf

[5] Extremely Large Minibatch SGD: Training ResNet-50 on ImageNet in 15
Minutes -- https://arxiv.org/pdf/1711.04325.pdf

31

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin Example

ALCF SDL Workshop 2018 Cray Inc. © 2018

Training Script Modifications

●  Both Horovod and CPE ML Plugin require some
modifications to a serial training script

●  For the CPE ML Plugin the changes are
●  Importing the Python module
●  Initialize the module

●  Possibly configure the thread team(s) for specific uses
●  Broadcast initial model parameters
●  Incorporate gradient aggregation between gradient computation and

model update
●  Finalize the Python module

33

ALCF SDL Workshop 2018 Cray Inc. © 2018

MNIST Example

●  Dataset of handwritten digits from 0-9
●  Simple CNN can be used to identify handwritten digits

●  This example is adapted from the TensorFlow official MNIST example
●  https://github.com/tensorflow/models/tree/master/official/mnist
●  Modified script included with CPE ML Plugin

●  module load /projects/datascience/kristyn/modulefiles/craype-
ml-plugin-py3/1.1.2

●  module load tensorflow
●  less $CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py

34

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Execution Example

● Once the script is modified job launch is just like a
typical MPI job

module load /projects/datascience/kristyn/modulefiles/craype-ml-plugin-py3/1.1.2
module load tensorflow

aprun -n4 -N1 -cc none -b python \
$CRAYPE_ML_PLUGIN_BASEDIR/examples/tf_mnist/mnist.py \

--enable_ml_comm \

--data_dir=/lus/theta-fs0/projects/SDL_Workshop/mendygra/mnist_data \
--model_dir=[train dir]

35

ALCF SDL Workshop 2018 Cray Inc. © 2018

Thank You!

Questions?

ALCF SDL Workshop 2018 Cray Inc. © 2018

Backup

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin - Import

38

● Access the Python API by importing the module

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin - Initialization

● Compute the number of trainable variables in the
model
●  Required for the CPE ML Plugin to pre-allocate needed

communication buffers
●  Example sets up a single thread team with one thread

39

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Team Configuration

● Set the maximum number of steps (mini batches) to
train for
●  Verbose output every 200 steps

● Also set output path to rank-specific location

40

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Broadcast Initial Model

● Broadcast initial model parameter values from rank 0
to all other ranks

●  Then assign broadcasted values locally

41

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Gradient Aggregation

● Perform gradient averaging across all ranks between
local gradient calculation and model update

42

ALCF SDL Workshop 2018 Cray Inc. © 2018

CPE ML Plugin – Finalize

● After all training steps are complete clean up data
structures and MPI

43

